| Section 2.3 Differentiation                 |  |
|---------------------------------------------|--|
|                                             |  |
|                                             |  |
| We learn:                                   |  |
|                                             |  |
| The definition and interpretation as        |  |
| slope of partial derivatives.               |  |
| How to compute partial derivatives.         |  |
| Linear approximations to a function         |  |
| The tangent plane of a function of two      |  |
| variables                                   |  |
| The gradient of a function                  |  |
| The gradient of a function                  |  |
|                                             |  |
|                                             |  |
| In the book there are also some theoretical |  |
| things:                                     |  |
| what it means to be differentiable          |  |
| Theorem 9 gives a condition a function to   |  |
|                                             |  |
| be differentiable.                          |  |
|                                             |  |
|                                             |  |

Before we get started: review of the derivative of a function  $f: R \rightarrow R$ .

We know the derivative of f at the point a is

$$f(a) = \frac{df}{dx} = \lim_{h \to 0} \frac{f(a+h) - f(a)}{h}$$

- It represents the rate of change: how fast we are going.
- It provides a linear approximation to f(x)near x = a.

## Definition of partial derivatives

To make things easier we start with a function  $f : R \land n \rightarrow R$ The (partial) derivative of  $f(x_1, ..., x_n)$ with respect to variable x\_j at the point

$$a = (a_1, ..., a_n)$$
 is

$$\frac{\partial f}{\partial y} = \lim_{x \to a} \frac{1}{h^{-1}0} - \frac{1}{h^{-1}} = \lim_{x \to a} \frac{1}$$

Idea: we regard all variables other than x\_i as constants and differentiate as usual with respect to  $x_j$ .

Examples:

a. f(x,y) = 2x - y to get 7x

The graph of f is the plane in R^3 that is the set of points (x, y, 2x-y). It is given by the equation z = 2x-y.

The partial derivatives are the slopes of this plane in the x and in the y directions.

b. The partial derivatives of  $x^3y + xy^2$  at the point (1,2).

$$\frac{\partial(x^3y + xy^2)}{\partial x} = 3x^2y + y$$

## Pre-class Warm-up!!

Let  $f(x,y) = 5xy^4 + x^2 \sin(y) + y$ What is  $\partial f/\partial x$ ?

a.  $5 \text{ y} 4 + 2x \sin(y) \checkmark$ 

b.  $5 y^4 + 2x \sin(y) + 1$ 

c.  $20 \text{ y}^3 + 2x \cos(y) + 1$ 

d. The question doesn't mean anything, because we only know how to find the partial derivative of f at a point, and no point is given.

e. None of the above.

I trunk (hope) the Canval
Site is now working!!

If you have source, please let
me know in al much preision
of possible.

Linear approximation to f  $a = (a_1, \dots, a_n)$  $g(x_1, ..., x_n) = f(a_1, ..., a_n) +$ 

The graph of the linear approximation is a linear space tangent to the graph of f at the point a.

The matrix of partial derivatives

(Supponent Coordinate functions:

So far we did functions 
$$f: R \land n \rightarrow R$$
.

Now we do  $f: R \land n \rightarrow R \land m$ 

Example  $f(s,t) = s(1,2,3) + t \land 2(1,0,-1)$ .

This  $f$  is made up of 3 functions  $R \land 2 \rightarrow R$ 

$$f(s,t) = (s+t^2, 2s, 3s-t^2)$$

$$= (f(s,t), f(s,t), f(s,t), f(s,t))$$
where  $f(s,t) = s+t^2, f(s,t) = 2s$ 

$$f(s,t) = 3s-t^2, We can do$$

$$2f_2 = 0$$

$$2f_2 = 2$$

We make a matrix of partial derivatives where the (i,j) entry is  $\partial f_i / \partial x_j$ 2t 2 x 3

This matrix is called the derivative (matrix) of f, or the Jacobian matrix of f.

## Definition of differentiability

Functions might not be differentiable everywhere. The official definition for  $f: R^n \rightarrow R^m$  to be differentiable at a point a in R^n is as follows.

Let D(a) be the derivative matrix of f at a.

The function g(x) = f(a) + Df(a) (x-a)is the best linear approximation to f near a.

Theorem 8: If f is differentiable at a then f is continuous at a.

Theorem 9: If all the partial derivatives  $\partial f_i / \partial x_j$  exist and are continuous near a then f is differentiable at a.

In the book they also define the gradient of a function  $f: R^n -> R$  but do not explain why. Their notation confuses row vectors and the column vectors used in matrix multiplication.

In the book they also define the gradient of a function  $f: R^n -> R$  but do not explain why. Their notation confuses row vectors and the column vectors used in matrix multiplication.

Example. Find the gradient of 
$$f(x,y) = x^2y - xy^2$$
 at the point  $(1,-1)$ 

z=2x-y+5

What is the slope of the graph of f(x,y)

= 2x - y + 5 in the direction of increasing x at the point (1,3)?

$$\frac{\partial f(a)}{\partial x_1}$$

a. 1
b. 2 
$$\sqrt{\frac{\partial F}{\partial x}}$$
 (1) 3

Example. Let  $f(x,y) = 3xy^2 + x^3 + 1$ 

a. Find the equation of the tangent plane to the graph of f at 
$$(x,y) = (1,-1)$$
.

b. Use the linear approximation of f around 
$$(x,y) = (1,-1)$$
 to approximate  $f(0.9,-1.1)$ .

a. It is 
$$z = 5x(1,-1)x + 2f(1,-1)y + D$$
  
 $z = 6x - 6y + D$   
Plug in  $z = f(1,-1) = 5$   $x = (y = -1)$   
 $5 = 6 + 6 + D$   $D = -7$ 

$$z = 6x - 6y - 7$$

$$g(x,y) = 6x + 6y + ($$

