We learn:

- The definition and interpretation as slope of partial derivatives.
- How to compute partial derivatives.
- Linear approximations to a function
- The tangent plane of a function of two variables
- The gradient of a function

In the book there are also some theoretical things:

- what it means to be differentiable
- Theorem 9 gives a condition a function to be differentiable.

Before we get started: review of the derivative of a function $f: R \rightarrow R$.

We know the derivative of f at the point a is

$$
f^{\prime}(a)=\left.\frac{d f}{d x}\right|_{a}=\lim _{h \rightarrow 0} \frac{f(a+h)-f(a)}{h}
$$

- It represents the rate of change: how fast we are going.
- It provides a linear approximation to $\mathrm{f}(\mathrm{x})$ near $x=a$.

$$
g(x)=f(a)+(x-a) f^{\prime}(a)
$$

has graph $=$ the tangent line at a to the graph of f.

Definition of partial derivatives

To make things easier we start with a function $f: R \wedge n->R$
The (partial) derivative of $f\left(x _1, \ldots, x _n\right)$ with respect to variable $x_{-} j$ at the point $\mathrm{a}=\left(\mathrm{a} _1, \ldots, a_{-} n\right)$ is

$$
\begin{aligned}
& a=\left(a_{-} 1, \ldots, a_{-} n\right) \text { is } f\left(a_{1}, \ldots, a_{1}+h, \ldots a_{n}\right) \\
& \left.\frac{\partial f}{\partial x_{y}}\right|_{\underline{x}=a}=\lim _{h \rightarrow 0}-f\left(a_{1}, \ldots, a_{n}\right)
\end{aligned}
$$

$$
=f_{x_{j}}(\underline{a})
$$

Idea: we regard all variables other than x_j as constants and differentiate as usual with respect to $\mathrm{x}_{\mathrm{-}} \mathrm{j}$.

Examples:
a. $f(x, y)=2 x-y$ to get $\frac{\partial F}{\partial x}$
we regard y as coutant:

$$
\frac{\partial f}{\partial x}=2 \quad \frac{\partial f}{\partial y}=-1
$$

The graph of f is the plane in $R \wedge 3$ that is the set of points $(x, y, 2 x-y)$. It is given by the equation $z=2 x-y$.
The partial derivatives are the slopes of this plane in the x and in the y directions.
b. The partial derivatives of $x^{\wedge} 3 y+x y^{\wedge} 2$ at the point $(1,2)$.

$$
\frac{\partial\left(x^{3} y+x y^{2}\right)}{\partial x}=3 x^{2} y+y^{2}
$$

Pre-class Warm-up !!

Let $f(x, y)=5 x y^{\wedge} 4+x^{\wedge} 2 \sin (y)+y$
What is $\partial \mathrm{f} / \partial \mathrm{x}$?
a. $5 y^{\wedge} 4+2 x \sin (y)$
b. $5 y^{\wedge} 4+2 x \sin (y)+1$
c. $20 y^{\wedge} 3+2 x \cos (y)+1$
d. The question doesn't mean anything, because we only know how to find the partial derivative of f at a point, and no point is given.
e. None of the above.

1 tome (hope) the Canvas site is now working!? If you have sues, please let me know in al much precision al passible.

Linear approximation to f

$$
\begin{aligned}
& a=\left(a_{1}, \ldots, a_{n}\right) \\
& g\left(x_{-} 1, \ldots, x_{_} n\right)=f\left(a_{_} 1, \ldots, a _n\right)+ \\
& \frac{\partial f(a)}{\partial x_{1}}\left(x_{1}-a_{1}\right)+\frac{\partial f}{\partial x_{2}}(a)\left(x_{2}-a_{2}\right)+\cdots \cdot \\
&
\end{aligned}
$$

The graph of the linear approximation is a linear space tangent to the graph of f at the point a.

The matrix of partial derivatives
Component
Coordinate functions:

So far we did functions $f: R \wedge n->R$.
Now we do $f: R \wedge n \rightarrow R \wedge m \quad f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$
Example $f(s, t)=s(1,2,3)+t \wedge 2(1,0,-1)$.
This f is made up of 3 functions $R \wedge 2 \rightarrow R$

$$
\begin{aligned}
& f(s, t)=\left(s+t^{2}, 2 s, 3 s-t^{2}\right) \\
& =\left(f_{1}(s, t), f_{2}(s, t), f_{3}(s, t)\right)
\end{aligned}
$$

where $f_{1}(s, t)=s+t^{2}, f_{2}(s, t)=2 s$
$f_{3}(s, t)=3 s-t^{2}$. We can do

$$
\frac{\partial f_{2}}{\partial t}=0 \quad \frac{\partial f_{2}}{\partial s}=2
$$

We make a matrix of partial derivatives where the (i, j) entry is $\partial f_{-} i / \partial x_{-} j$

This matrix is called the derivative (matrix) of f, or the Jacobian matrix of f.

Definition of differentiability

Functions might not be differentiable everywhere. The official definition for $f: R^{\wedge} n->R^{\wedge} m$ to be differentiable at a point a in $\mathrm{R} \wedge \mathrm{n}$ is as follows.

Let $D(a)$ be the derivative matrix of f at a. Then f is differentiable at a if $\mathrm{D}(\mathrm{a})$ exists and also

The function

$$
g(x)=f(a)+D f(a)(x-a)
$$

is the best linear approximation to f near a.

Theorem 8: If f is differentiable at a then f is continuous at a.

Theorem 9: If all the partial derivatives $\partial f _i / \partial x _j$ exist and are continuous near a then f is differentiable at a.

In the book they also define the gradient of a function $f: R \wedge n \rightarrow R$ but do not explain why. Their notation confuses row vectors and the column vectors used in matrix multiplication.

In the book they also define the gradient of a function $f: R \wedge n->R$ but do not explain why. Their notation confuses row vectors and the column vectors used in matrix multiplication.

The gradient of f at a is the vector

$$
\left[\begin{array}{c}
\frac{\partial f}{\partial x_{1}}(a) \\
\vdots \\
\frac{\partial f}{\partial x_{n}}(a)
\end{array}\right]
$$

Example. Find the gradient of

$$
f(x, y)=x \wedge 2 y-x y \wedge 2
$$

at the point $(1,-1)$

$$
z=2 x-y+5
$$

What is the slope of the graph of $f(x, y)$ $=2 x-y+5$ in the direction of increasing x at the point $(1,3)$?
a. 1
b. $2 \quad J=\frac{\partial f}{\partial x}(1,3)$
c. 3

Example. Let $f(x, y)=3 x y^{\wedge} 2+x^{\wedge} 3+1$
a. Find the equation of the tangent plane to the graph of f at $(x, y)=(1,-1)$.
b. Use the linear approximation of f around $(x, y)=(1,-1)$ to approximate $f(0.9,-1.1)$.
a. It is $z=\frac{\partial f}{\partial x}(1,-1) x+\frac{\partial f}{\partial y}(1,-1) y+D$

$$
=6 x-6 y+D
$$

Plug in $z=f(1,-1)=5 \quad x=1 \quad y=-1$

$$
5=6+6+D \quad D=-7
$$

$$
z=6 x-6 y-7
$$

b. $g(x, y)=6 x-6 y-7$ Find $g(0.9,-1.1)$

