
Section 2.3 Differentiation

We learn:

• The definition and interpretation as 
slope of partial derivatives.

• How to compute partial derivatives.
• Linear approximations to a function
• The tangent plane of a function of two 

variables
• The gradient of a function

In the book there are also some theoretical 
things: 
• what it means to be differentiable
• Theorem 9 gives a condition a function to 

be differentiable.



Before we get started: review of the derivative of 
a function  f : R -> R.

We know the derivative of  f  at the point  a  is 

• It represents the rate of change: how fast 
we are going.

• It provides a linear approximation to  f(x) 
near  x = a.
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Definition of partial derivatives

To make things easier we start with a 
function f : R^n -> R
The (partial) derivative of  f(x_1, … ,x_n)  
with respect to variable  x_j at the point  
a = (a_1, … , a_n)  is

Examples: 
a.  f(x,y) = 2x - y

The graph of  f  is the plane in  R^3  that is 
the set of points  (x, y, 2x-y).  It is given by 
the equation  z = 2x-y.
The partial derivatives are the slopes of this 
plane in the  x  and in the  y directions.

b.  The partial derivatives of  x^3y + xy^2  at 
the point  (1,2).

Idea: we regard all variables other than  x_j  
as constants and differentiate as usual with 
respect to  x_j.

to get If
0 X

andy as constant !we reg

· =
2 8 =

- 1

/y = a

=/ima
e

- fx()
xy+xyY= 3xy4

2



Pre-class Warm-up !!
Let  f(x,y) = 5xy^4 + x^2 sin(y) + y
What is ∂f/∂x?

a.  5 y^4 + 2x sin(y)

b.  5 y^4 + 2x sin(y) + 1

c.  20 y^3 + 2x cos(y) + 1

d.  The question doesn’t mean anything, 
because we only know how to find the partial 
derivative of  f  at a point, and no point is given.

e.  None of the above.
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Linear approximation to  f 

g(x_1, … ,x_n) = f(a_1, … , a_n) + 

The graph of the linear approximation is a 
linear space tangent to the graph of  f  at the 
point a.
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The matrix of partial derivatives

Coordinate functions:

So far we did functions  f : R^n -> R.
Now we do  f : R^n -> R^m
Example  f(s,t) = s(1,2,3) + t^2(1,0,-1).
This  f  is made up of 3 functions  R^2 -> R

We make a matrix of partial derivatives 
where the (i,j) entry is  ∂f_i / ∂x_j

This matrix is called the derivative (matrix) of  
f , or the Jacobian matrix of  f.
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Definition of differentiability

Functions might not be differentiable everywhere.
The official definition for  f : R^n -> R^m  to be 
differentiable at a point  a  in  R^n is as follows.  

Let  D(a)  be the derivative matrix of  f  at  a.
Then  f  is differentiable at  a  if  D(a) exists and 
also

The function  
g(x) = f(a) + Df(a) (x-a)  
is the best linear approximation to  f  near  a.

Theorem 8: If  f  is differentiable at  a  then  
f  is continuous at  a.

Theorem 9: If all the partial derivatives  
∂f_i / ∂x_j  exist and are continuous near  
a  then  f  is differentiable at  a.

In the book they also define the gradient of 
a function  f : R^n -> R but do not explain 
why. Their notation confuses row vectors 
and the column vectors used in matrix 
multiplication.
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In the book they also define the gradient of a 
function  f : R^n -> R but do not explain why. 
Their notation confuses row vectors and the 
column vectors used in matrix multiplication.

The gradient of  f  at  a  is the vector

Example. Find the gradient of
f(x,y) = x^2y - xy^2 
at the point  (1,-1)

What is the slope of the graph of  f(x,y) 
= 2x - y + 5 in the direction of 
increasing  x  at the point  (1,3)?

a.  1

b.  2

c.  3

lei
2 = 2x - y+5

V = (1, 3)



Example. Let  f(x,y) = 3xy^2 + x^3 + 1

a.  Find the equation of the tangent plane to the 
graph of  f  at  (x,y) = (1,-1).

b.  Use the linear approximation of  f  around  
(x,y) = (1,-1)  to approximate  f(0.9,-1.1).
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